

From UML to Process Algebra
and Back:

An Automated Approach to Model-Checking
Software Design Artifacts of Concurrent Systems

Daniela Remenska, Jeff Templon , Tim A.C. Willemse,

Philip Homburg, Kees Verstoep , Adria Casajus , and Henri Bal

NASA Formal Methods Symposium
May 2013

Model checking: a success story?

Software/Hardware
System

Model checking: a success story?

Model Checker

Software/Hardware
System

Are there
deadlocks in
my system?

Model checking: a success story?

Model Checker

Software/Hardware
System

Nope, you're
good to go!Are there

deadlocks in
my system?

Model checking: a success story?

Model Checker

Software/Hardware
System

Nope, you're
good to go!

Houston, we
have a problem!

Are there
deadlocks in
my system?

Model checking: a success story?

Are there
deadlocks in
my system?

Model Checker

Software/Hardware
System

Model checking: a success story?

Are there
deadlocks in
my system?

Model Checker

Software/Hardware
System

Model checking: a success story?

Are there
deadlocks in
my system?

Model Checker

Software/Hardware
System

Nope, you're
good to go!

Houston, we
have a problem!

Model checking: a success story?

Why state-of-the-art is not yet
state-of-the-practice?

● SE wants efficient push-button verification solutions
● Not everything is implemented in Java / C / Matlab
● Not everything is described in a domain-specific verifiable language

● Need to write a funky model in process algebra?
● Forget it, let's just stick to testing and static analysis.

● UML is the lingua franca for describing systems
● Intuitive, visual, lots of CASE tools, automated test/code generation
● Not officially formalized!

Sequence Diagram

Class Diagram

State Machine

State Machine

Class Diagram

Sequence Diagram

Sequence Diagrams (UML2.x)

alternatives

loop

parallelism

break

Combined Fragments [ref]

For a broad domain of OO software

systems, Sequence Diagrams give

the most precise description of the behavior,

the closest one to code implementation.

Goal: a full round-trip approach,

supported by a toolset.

Ideally, model checking should be hidden

from the UML designer!

 Target formalism: mCRL2
● actions: atomic steps

● processes: combination (sequential, parallel) of
actions …

● Communication between processes (exchange of
data) via action synchronization ...

● if-then-else constructs …

● nondeterministic choices …

● means to describe custom data structures ...
(also:integers,reals,enumerations,booleans,lists,sets..)

The approach

The rationale: treating objects as
sequential processes

Time

Objects (lifelines)

"The general UML-to-Promela formalization approach is to map
objects to processes in Spin (proctypes) that exchange messages..."

"...lines 7 and 8 specify the lifelines using process..."

Execution
occurrence

Objects: sequential or concurrent?

In a concurrent setting, multiple threads of a process could be
invoking methods on the same object.

The rationale: global choices

- managing choices globally

- dealing only with synchronous
 communication

- not treating all Fragment types

Why should object a need to know
local decisions of object b ?

Goal: preserve the OO view in the
target model

● An OS level process is essentially a chain of
method invocations on objects

● Associate an mCRL2 process description with
each class method
– Each mCRL2 process instance carries information

about the class, object, and OS process instance to
which the method behavior belongs

● Trivial to reverse model-checking traces back to
the UML domain

Validation

● UML specification is semi-formal
– Semantics deduced via partial meta-model views

& natural language descriptions

– No mathematically-formalized semantics

– We don't have formal correctness proofs to
support the validity of this transformation

– Simulation on simple building blocks; application
on a real case study

Case Study: DIRAC Executor Framework

$ java ­jar UML2mCRL2 exportedModel.uml model.mcrl2

$ mcrl22lps ­nfbw model.mcrl2 model.lps

$ lps2pbes model.lps model.pbes –formula=formula.mcf

$ pbes2bool model.pbes

[true* .
synch_call(1,ExecutorQueues,_queues,pushTask(JobPath,taskId,false)).
true*.
!(synch_call(1,ExecutorQueues,_queues,popTask([JobPath])))*.
synch_reply(1,ExecutorDispatcher,_eDispatch,
_sendTaskToExecutor_return(OK,0))]false

● Problem: state-space explosion!
- 50 processes in the model
- >300million states and >600GB of memory

● Workaround: standard monitoring automaton running lock-
step with the model, fires a deadlock action if a violation is
found

Conclusions and Future Work

● Goal: bridge the existing gap by providing
transformation methodology and toolset to verify
UML models

● Express properties in UML rather than with µ-calculus

[true* .
synch_call(1,ExecutorQueues,_queues,pushTask(JobPath,taskId,false)).
true*.
!(synch_call(1,ExecutorQueues,_queues,popTask([JobPath])))*.
synch_reply(1,ExecutorDispatcher,_eDispatch,
_sendTaskToExecutor_return(OK,0))]false

remember this?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

